HEATING,
COOLING,
LIGHTING
CONTENTS

FOREWORD TO THE FOURTH EDITION xi
Edward Mazria

FOREWORD TO THE FIRST EDITION xiii
James Marston Fitch

PREFACE xv

ACKNOWLEDGMENTS xvii

1 HEATING, COOLING, AND LIGHTING AS FORM-GIVERS IN ARCHITECTURE 1

1.1 Introduction 2
1.2 Indigenous and Vernacular Architecture 3
1.3 Formal Architecture 5
1.4 The Architectural Approach to Sustainable Design 8
1.5 Dynamic versus Static Buildings 11
1.6 Resilient Design 12
1.7 Biophilic Design 12
1.8 Color and Ornamentation 12
1.9 Energy and Architecture 13
1.10 Climate and Architecture 14
1.11 Sustainability Codes and Voluntary Programs 16
1.12 Integrated Design 17
1.13 Decision Making 18
1.14 Conclusion 19

Key Ideas of Chapter 1 19

2 SUSTAINABLE DESIGN AND ENERGY SOURCES 21

2.1 Easter Island: Learning from the Past 22
2.2 Sustainable Design 22
2.3 Reuse, Recycle, and Regenerate by Design 24
2.4 The Sustainability Movement 26
2.5 Population and Affluence 26
2.6 Growth 27
2.7 Exponential Growth 27
2.8 The Amoeba Analogy 28
2.9 Supply versus Efficiency 29
2.10 Sustainable-Design Issues 30
2.11 Climate Change 30
2.12 The Global Greenhouse 33
2.13 The Ozone Hole 33
2.14 Efficiency versus Renewable Energy 34
2.15 Energy Sources 34
2.16 Energy Use in Ancient Greece 34
2.17 Nonrenewable Energy Sources 35
2.18 Renewable Energy Sources 38
2.19 Hydrogen 44
2.20 Conclusion 45

Key Ideas of Chapter 2 46

3 BASIC PRINCIPLES 49

3.1 Introduction 50
3.2 Heat 50
3.3 Sensible Heat 50
3.4 Latent Heat 51
3.5 Evaporative Cooling 51
3.6 Convection 52
3.7 Transport 52
3.8 Energy-Transfer Mediums 53
3.9 Radiation 53
3.10 Greenhouse Effect 54
3.11 Equilibrium Temperature of a Surface 55
3.12 Mean Radiant Temperature 56
3.13 Heat Flow 56
3.14 Heat Sink 57
3.15 Heat Capacity 57
3.16 Thermal Resistance 58
3.17 Heat-Flow Coefficient 58
3.18 Time Lag 58
3.19 Insulating Effect of Mass 59
3.20 Energy Conversion 59
3.21 Combined Heat and Power 60
3.22 Fuel Cells 60
3.23 Embodied Energy 61
3.24 Conclusion 61

Key Ideas of Chapter 3 62
THERMAL COMFORT

4.1 Biological Machine 64
4.2 Thermal Barriers 65
4.3 Metabolic Rate 67
4.4 Thermal Conditions of the Environment 67
4.5 The Psychrometric Chart 68
4.6 Dew Point and Wet-Bulb Temperatures 69
4.7 Heat Content of Air 70
4.8 Thermal Comfort 72
4.9 Shifting of the Comfort Zone 73
4.10 Adaptive Comfort 74
4.11 Clothing and Comfort 75
4.12 Strategies 75
4.13 Conclusion 76

Key Ideas of Chapter 4 76

CLIMATE

5.1 Introduction 80
5.2 Climate 80
5.3 Microclimate 83
5.4 Climatic Anomalies 85
5.5 Climate Regions of the United States and Canada 86
5.6 Explanations of the Climatic Data Tables 87
5.7 Relative Heating and Cooling Loads 93
5.8 Additional Climate Information 94
5.9 Climate Information for Other Countries 95

Data Tables for Climate Regions, United States 96
5.10 Design Strategies 130

Key Ideas of Chapter 5 137

SOLAR GEOMETRY

6.1 Introduction 140
6.2 The Sun 140
6.3 Elliptical Orbit 140
6.4 Tilt of the Earth’s Axis 141
6.5 Consequences of the Altitude Angle 142
6.6 Winter 144
6.7 The Sun Revolves Around the Earth! 144
6.8 The Sky Dome 144
6.9 Determining Altitude and Azimuth Angles 145
6.10 Solar Time 146
6.11 Horizontal Sun-Path Diagrams 146
6.12 Vertical Sun-Path Diagrams 148
6.13 Drawing Sunbeams 150
6.14 Sun-Path Models 153
6.15 Solar Heat Gain 154
6.16 Solar Site-Evaluation Tools 158
6.17 Heliodons 159
6.18 Sundials for Model Testing 160
6.19 Conceptually Clear Heliodons 161
6.20 Conclusion 162

Key Ideas of Chapter 6 164

PASSIVE SOLAR

7.1 History 166
7.2 Solar in America 166
7.3 Solar Hemicycle 167
7.4 Latest Rediscovery of Passive Solar 169
7.5 Passive Solar 169
7.6 Direct-Gain Systems 171
7.7 Design Guidelines for Direct-Gain Systems 173
7.8 Example 175
7.9 Trombe Wall Systems 175
7.10 Design Guidelines for Trombe Wall Systems 179
7.11 Example 179
7.12 Sunspaces 180
7.13 Balcomb House 182
7.14 Sunspace Design Guidelines 183
7.15 Comparison of the Three Main Passive Heating Systems 184
7.16 General Considerations For Passive Solar Systems 184
7.17 Heat-Storage Materials 189
7.18 Other Passive Heating Systems 191
7.19 Maximizing Passive Solar 194
7.20 Conclusion 194

Key Ideas of Chapter 7 195

PHOTOVOLTAICS AND ACTIVE SOLAR

8.1 Introduction 198
8.2 The Almost Ideal Energy Source 198
8.3 History of PV 199
8.4 The PV Cell 201
8.5 Types of PV Systems 202
8.6 Balance of System Equipment 203
8.7 Building-Integrated Photovoltaics 203
8.8 Orientation and Tilt 205
Chapter 8: Solar Electric Applications

- **8.1** Facades Clad with PV 207
- **8.2** PV Shading Devices 210
- **8.3** PV: Part of the Second Tier 210
- **8.4** Sizing a PV System 210
- **8.5** Finding the PV Array Size for a Stand-Alone Building by the Short Calculation Method 211
- **8.6** Design Guidelines 213
- **8.7** The Promise of PV 213
- **8.8** The Cost-Effectiveness of PV and Active Solar Applications 214
- **8.9** Active Solar Swimming-Pool Heating 216
- **8.10** Solar Hot-Water Systems 217
- **8.11** Solar Hot-Air Collectors 219
- **8.12** Active/Passive Solar Systems 221
- **8.13** Preheating of Ventilation Air 224
- **8.14** The Future of Active Solar 226
- **8.15** Conclusion 226

Key Ideas of Chapter 8 228

Chapter 9: Shading and Light Colors

- **9.1** History of Shading 230
- **9.2** Shading 234
- **9.3** Fixed Exterior Shading Devices 236
- **9.4** Movable Shading Devices 239
- **9.5** Shading Periods of the Year 246
- **9.6** Overhangs 249
- **9.7** Design of Horizontal Overhangs—Basic Method 250
- **9.8** Shading Design for South Windows 251
- **9.9** Design Guidelines for Fixed South Overhangs 251
- **9.10** Design Guidelines for Movable South Overhangs 253
- **9.11** Shading for East and West Windows 254
- **9.12** Design of East and West Horizontal Overhangs 258
- **9.13** Design of Fins on North Windows 259
- **9.14** Design Guidelines for Eggcrate Shading Devices 259
- **9.15** Special Shading Strategies 261
- **9.16** Shading Outdoor Spaces 263
- **9.17** Using Physical Models for Shading Design 267
- **9.18** Glazing as the Shading Element 270
- **9.19** Interior Shading Devices 276
- **9.20** Solar Heat Gain Coefficient 277
- **9.21** Roof and Wall Reflectivity 278
- **9.22** Conclusion 281

Key Ideas of Chapter 9 283

Chapter 10: Passive Cooling

- **10.1** Introduction to Cooling 286
- **10.2** Historical and Indigenous Use of Passive Cooling 286
- **10.3** Passive Cooling Systems 292
- **10.4** Comfort Ventilation versus Night-Flush Cooling 293
- **10.5** Basic Principles of Airflow 293
- **10.6** Airflow through Buildings 297
- **10.7** Example of Ventilation Design 306
- **10.8** Comfort Ventilation 307
- **10.9** Night-Flush Cooling 309
- **10.10** Double-Skin Facades and Operable Roofs 312
- **10.11** Radiant Cooling 313
- **10.12** Evaporative Cooling 316
- **10.13** Cool Towers 319
- **10.14** Earth Cooling 320
- **10.15** Dehumidification with a Desiccant 322
- **10.16** Solar Chimney 323
- **10.17** Conclusion 324

Key Ideas of Chapter 10 324

Chapter 11: Site Design, Community Planning, and Landscaping

- **11.1** Introduction 326
- **11.2** Site Selection 328
- **11.3** Solar Access 329
- **11.4** Shadow Patterns 330
- **11.5** Site Planning 334
- **11.6** Solar Zoning 338
- **11.7** Physical Models 340
- **11.8** Wind and Site Design 341
- **11.9** Plants and Vegetation 346
- **11.10** Vegetated Roofs 352
- **11.11** Lawns 355
- **11.12** Landscaping 355
- **11.13** Community Design 360
- **11.14** Cooling Our Communities 362
- **11.15** Conclusion 363

Key Ideas of Chapter 11 363
12 LIGHTING 365

12.1 Introduction 366
12.2 Light 367
12.3 Reflectance/Transmittance 370
12.4 Color 371
12.5 Vision 374
12.6 Perception 375
12.7 Performance of a Visual Task 379
12.8 Characteristics of the Visual Task 379
12.9 Illumination Level 381
12.10 Brightness Ratios 382
12.11 Glare 384
12.12 Equivalent Spherical Illumination 387
12.13 Activity Needs 389
12.14 Biological Needs 392
12.15 Light and Health 394
12.16 The Poetry of Light 395
12.17 Rules for Lighting Design 395
12.18 Career Possibilities 396
12.19 Conclusion 397
Key Ideas of Chapter 12 398

13 DAYLIGHTING 399

13.1 History of Daylighting 400
13.2 Why Daylighting? 403
13.3 The Nature of Daylight 405
13.4 Conceptual Model 407
13.5 Illumination and the Daylight Factor 409
13.6 Light without Heat? 410
13.7 Cool Daylight 411
13.8 Goals of Daylighting 412
13.9 Basic Daylighting Strategies 413
13.10 Basic Window Strategies 416
13.11 Advanced Window Strategies 419
13.12 Window Glazing Materials 424
13.13 Top Lighting 427
13.14 Skylight Strategies 427
13.15 Clerestories, Monitors, and Light Scoops 432
13.16 Special Daylighting Techniques 437
13.17 Translucent Walls and Roofs 442
13.18 Electric Lighting as a Supplement to Daylighting 444
13.19 Physical Modeling 445
13.20 Guidelines for Daylighting 449
13.21 Conclusion 450
Key Ideas of Chapter 13 450

14 ELECTRIC LIGHTING 453

14.1 History of Light Sources 454
14.2 Light Sources 455
14.3 Incandescent and Halogen Lamps 457
14.4 Discharge Lamps 459
14.5 Fluorescent Lamps 460
14.6 High Intensity Discharge Lamps (Mercury, Metal Halide, and High Pressure Sodium) 462
14.7 Solid State Lighting 464
14.8 Comparison of the Major Lighting Sources 466
14.9 Luminaires 467
14.10 Lenses, Diffusers, and Baffles 468
14.11 Lighting Systems 470
14.12 Remote-Source Lighting Systems 472
14.13 Visualizing Light Distribution 473
14.14 Architectural Lighting 476
14.15 Outdoor Lighting 478
14.16 Emergency Lighting 479
14.17 Controls 480
14.18 Maintenance 480
14.19 Rules for Energy-Efficient Electric Lighting Design 481
14.20 Laws and Standards 481
14.21 Conclusion 482
Key Ideas of Chapter 14 482

15 THE THERMAL ENVELOPE: KEEPING WARM AND STAYING COOL 483

15.1 Background 484
15.2 Heat Loss 485
15.3 Heat Gain 487
15.4 Solar Reflectivity (Albedo) 489
15.5 Compactness, Exposed Area, and Thermal Planning 490
15.6 Insulation Materials 493
15.7 The Thermal Envelope 498
15.8 Heat Bridges 505
15.9 Windows 508
15.10 Movable Insulation 512
15.11 Insulating Effect From Thermal Mass 513
15.12 Earth Sheltering 515
15.13 Infiltration and Ventilation 519
15.14 Moisture Control 521
15.15 Radon 524
15.16 Appliances 525
CONTENTS

15

15.17 Conclusion 526
Key Ideas of Chapter 15 526

16

MECHANICAL EQUIPMENT FOR HEATING AND COOLING 529

16.1 Introduction 530
16.2 Heating 530
16.3 Thermal Zones 532
16.4 Heating Systems 532
16.5 Electric Heating 534
16.6 Hot-Water (Hydronic) Heating 535
16.7 Hot-Air Systems 537
16.8 Cooling 540
16.9 Refrigeration Cycles 541
16.10 Heat Pumps 542
16.11 Geo-Exchange 543
16.12 Cooling Systems 545
16.13 Air-Conditioning for Small Buildings 548
16.14 Air-Conditioning for Large Multistory Buildings 552
16.15 Design Guidelines for Mechanical Systems 562
16.16 Air Supply (Ducts and Diffusers) 563
16.17 Ventilation 566
16.18 Energy-Efficient Ventilation Systems 568
16.19 Air Filtration and Odor Removal 570
16.20 Special Systems 570
16.21 Integrated and Exposed Mechanical Equipment 572
16.22 Low Energy Heating and Cooling 573
16.23 Conclusion 573
Key Ideas of Chapter 16 574

17

TROPICAL ARCHITECTURE 577

17.1 Introduction 578
17.2 Traditional Tropical Architecture 578
17.3 The Tropical Climate 583
17.4 The Solar Geometry of the Tropics 583
17.5 Shading in Tropical Climates 587
17.6 Daylighting in the Tropics 589
17.7 Passive Cooling 589
17.8 Air-Conditioned Buildings in the Tropics 590
17.9 Conclusion 593
Key Ideas of Chapter 17 594

18

RECOMMENDED LOW ENERGY CASE STUDIES 595

18.1 Introduction 596
18.2 Case Studies 596

19

CHECKLIST FOR DESIGNING INTEGRATED SUSTAINABLE BUILDINGS 599

19.1 Introduction 600
19.2 Site Selection 600
19.3 Form 600
19.4 Plan 600
19.5 Windows 600
19.6 Daylighting 601
19.7 Shading 601
19.8 Color 601
19.9 Thermal Envelope 602
19.10 Thermal Mass 602
19.11 Glazing 602
19.12 Air Barrier 603
19.13 Passive Systems 603
19.14 Electric Lighting 603
19.15 Mechanical Equipment 603

Appendices

APPENDIX A
HORIZONTAL SUN-PATH DIAGRAMS 605

APPENDIX B
VERTICAL SUN-PATH DIAGRAMS 617

APPENDIX C
SOLAR ALTITUDE AND AZIMUTH ANGLES 629

APPENDIX D
METHODS FOR ESTIMATING THE HEIGHT OF TREES, BUILDINGS, ETC. 635

D.1 Proportional-Shadow Method 635
D.2 Similar-Triangle Method 635
D.3 45° Right-Triangle Method 636
D.4 Trigonometric Method 636
D.5 Tools for Measuring Vertical Angles 636
Contents

Appendix E
Sundials

F.1 Introduction 649
F.2 Directions for Constructing a Sun-Path Model 649

Appendix F
Sun-Path Models

G.1 Introduction 659
G.2 Construction of a Water Table 659

Appendix G
The Water Table for Ventilation Studies

H.1 Introduction 661
H.2 The Solar Pathfinder 661
H.3 The SunEye 661
H.4 The Sun Locator 663
H.5 Do-It-Yourself Solar Site Evaluator 663

Appendix I
Heliodons

I.1 Introduction 669
I.2 The Sun Simulator Heliodon 669
I.3 The Sun Emulator Heliodon 669
I.4 The Tabletop Heliodon 670
I.5 The Bowling Ball Heliodon 673

Appendix J
Tables of R-Values

K.1 Books 679
K.2 Journals 679
K.3 Videos 679
K.4 Organizations 680
K.5 Web-Based Resources 681

Appendix L
Conversion Factors Between the Inch-Pound (I-P) System and the International System of Units (SI)

Bibliography 687

Index 693
The compelling words written by James Marston Fitch in 1991 in the Foreword to the first edition (which follows) are still valid, but the stakes are now much higher. Because the fate of the planet is at stake, it is no longer just a question of following a particular architectural or design philosophy. Buildings consume about half the energy produced in the United States and around the world. Today, more than 50 percent of the world’s population lives in cities, a figure that is likely to rise to 60 percent over the next two decades. It is clear that timing is critical: with 900 billion ft\(^2\) (80 billion m\(^2\)) of urban environment projected to be built and rebuilt in the next twenty years (an area equal to three times the total building stock of the United States), we are presented with an extraordinary window of opportunity to meet present and looming threats. Our best chance of doing so is to ensure that the architecture, planning, and development community, the primary agents shaping the built environment through design and construction, have access to the knowledge and tools necessary for the transition to a decarbonized, sustainable, and adaptive world.

Professor Lechner’s book describes how to achieve this transition in the built environment. The book illustrates the many sustainable strategies available to designers and provides the information needed during the early phases of the design process, when a building’s energy consumption patterns are defined. By using the strategies presented in this book, much of the energy consumed to heat, light, and cool buildings can be dramatically reduced.

Professor Lechner’s book is also an important resource for those architects who are concerned about the aesthetic aspects of sustainability. He convincingly explains and demonstrates how lessons learned from vernacular architecture can be combined with the best of modern ideas to create low-impact yet beautifully designed humane architecture. Since carbon neutral buildings can be fully powered by renewable resources, a future of low-impact buildings is not only necessary but also elegantly achievable.

EDWARD MAZRIA, AIA
Professor Lechner’s book differs from most of its predecessors in several important respects: (1) he deals with the heating, cooling, and lighting of buildings, not as discrete and isolated problems, but in the holistic sense of being integral parts of the larger task of environmental manipulation; (2) he deals with the subjects not merely from the engineer’s limited commitment to mechanical and economic efficiency but from the much broader viewpoint of human comfort and physical and psychic well being; (3) he deals with these problems in relation to the central paradox of architecture—how to provide a stable, predetermined internal environment in an external environment that is in constant flux across time and space; and finally, (4) he approaches all aspects of this complex subject from a truly cultural—as opposed to a narrowly technological—perspective.

This attitude toward contemporary technology is by no means hostile. On the contrary, Professor Lechner handles it competently and comprehensively. But he never loses sight of the fact that the task of providing a truly satisfactory enclosure for human activity is that one must view the building as a whole. He points out, quite correctly, that until the last century or so, the manipulation of environmental factors was, of necessity, an architectural problem.

It was the building itself—and only incidentally any meager mechanical equipment that the period happened to afford—that provided habitable space. To illustrate this point, he makes continuous and illuminating analysis to both high-style and vernacular traditions, to show how sagaciously the problems of climate control were tackled by earlier, prescientific, premechanized societies.

This is no easy-to-read copybook for those designers seeking shortcuts to glitzy postmodern architecture. On the contrary, it is a closely reasoned, carefully constructed guide for architects (young and old) who are seeking an escape route from the energy-wasteful, socially destructive cul-de-sac into which the practices of the past several decades have led us. Nor is it a Luddite critique of modern technology; to the contrary, it is a wise and civilized explication of how we must employ technical and scientific knowledge if we in the architectural field are to do our bit toward avoiding environmental disaster.

JAMES MARSTON FITCH
Hon. AIA, Hon. FRIBA
In this new edition the goal of previous editions remains: to provide the appropriate knowledge at the level of complexity needed at the schematic design stage. In the years since the first edition was published, we have moved from a shortage of information to a flood because of the Internet. This book will aid the designer because it presents the information in a concise, logical, and accessible arrangement and at a useful level.

Since heating, cooling, and lighting are accomplished by adding energy to or removing it from a building, and since the consumption of energy is causing global warming, it is vital for architects to design low energy, sustainable buildings. Although sustainability deals with many issues, the energy issues are the most critical. Thus, an additional goal of this book is to provide architects with the skills and knowledge needed to create low energy and low carbon-emission buildings.

In addition to improving and updating every chapter, three new chapters have been added. Chapter 17 on tropical architecture was added because a large portion of the world’s population lives in the tropical zone and because many architects trained in designing buildings in temperate climates end up designing buildings in the tropics. Case studies, formerly in Chapter 17, are now in Chapter 18. Because of the extensive information available on the Web, only a brief description is given of a personal selection of buildings.

Chapter 19, the third new chapter, presents a checklist to help in the design of low energy, sustainable buildings. The checklist guides the designer through the decision-making process so that important options are considered at the appropriate time.

This book focuses on the schematic design stage, where the key decisions are made. The graph below points out how the earliest decisions have the greatest impact on a project. A building’s cost and environmental impact are established mainly at the schematic design stage. The most basic decisions of size, orientation, and form often have the greatest impact on the resources required during both construction and operation. Thus, designs for sustainable buildings are achieved primarily by the earliest decisions in the design process rather than by add-ons and engineering decisions made after the architectural design of the building has been essentially completed.

The information in this book is presented to support the three-tier approach to sustainable design of the heating, cooling, and lighting of buildings. The first tier is load avoidance. Here the need for heating, cooling, and lighting is minimized by the design of the building itself. The second tier consists of using natural energies through methods such as passive solar, passive cooling, natural ventilation, and daylighting. This tier is also accomplished mainly by the design of the building itself. The third and last tier uses mechanical and electrical equipment to satisfy the needs not provided for by the first two tiers.

With the knowledge and information presented in this book, the first two tiers can provide most of the thermal and lighting requirements of a building. As a consequence, the mechanical and electrical equipment of the third tier will be substantially smaller and will use much less energy than is typical now, thereby resulting in more sustainable buildings. Since tiers one and two are the domain of the architect, the role of the engineer at the third tier is to provide only the heating, cooling, and lighting that the architect could not.
For the fourth edition, I would like to thank especially John Marusich for his excellent work on the new and revised drawings. Since this book is built on the previous three editions, I also want to thank again all of the people who helped me write those earlier editions. The typing and proofreading for the fourth edition were done by my son, Walden Lechner.

And again, I want to thank my wife, Prof. Judith Lechner, whose help, support, and love are invaluable to me.

NORBERT LECHNER
Prof. Emeritus and Architect
Auburn University
Two essential qualities of architecture [commodity and delight], handed down from Vitruvius, can be attained more fully when they are seen as continuous, rather than separated, virtues.

. . . In general, however, this creative melding of qualities [commodity and delight] is most likely to occur when the architect is not preoccupied either with form-making or with problem-solving, but can view the experience of the building as an integrated whole. . . .

John Morris Dixon,
Editor of Progressive Architecture, 1990

All design projects should engage the environment in a way that dramatically reduces or eliminates the need for fossil fuel.

The 2010 Imperative,
Edward Mazria, AIA,
Founder of Architecture 2030
1.1 INTRODUCTION

Architecture has been called journalism in stone, since it reflects the culture, climate, and resources of the time and place. During the Renaissance, for example, the main influence was the rediscovery of the classical world. What is the agent of change today?

The story that is now shaping the future of architecture is sustainability. There are few people left today who are not in favor of creating a sustainable world or who would claim that we are living in a sustainable world. Since building impacts the environment more than any other human activity, architects have both the responsibility and the opportunity to lead mankind to a sustainable future.

Sustainable architecture can be achieved by using “the best of the old and the best of the new.” A new architecture is being created by using modern science, technology, and ideas of aesthetics combined with traditional ideas that responded to human needs, regionalism, and climate. Such architecture will be more varied than contemporary architecture, which gives no clue as to where a building is located. Much contemporary architecture looks the same in New York, Paris, New Delhi, or Tokyo. Furthermore, this de facto “international” architecture is equally inappropriate wherever it is built since it is not sustainable for any climate.

Sustainability covers many issues, but none is as important as energy consumption. More than any other factor, the energy consumption of buildings is destroying the planet as we know it. Buildings use about 48 percent of all the energy consumed, with 40 percent for their operation and 8 percent for their construction (Fig. 1.1a). This energy is mostly derived from fossil sources that produce the carbon dioxide that is the main cause of global warming. We must replace these polluting sources with clean, renewable energy sources such as wind, solar energy, and biomass, or we must increase the efficiency of our building stock so that it uses less energy. Of course, we need to do both, but decreasing the energy consumption of buildings is both quicker and less expensive. Furthermore, the design of energy-responsive buildings will yield a new aesthetic that can replace both the blandness of most modern buildings and the inappropriate copying of previous styles.

Is it really possible for architecture to seriously address the problem of global warming? The answer is an unambiguous yes, both because present buildings are so wasteful of energy and because we know how to design and construct buildings that use 80 percent less energy than the standard new building. Presently, there are architects around the world designing “zero-energy buildings,” which are designed to use as little energy as possible, with the small remaining load being met mostly by on-site renewable energy such as photovoltaics (Fig. 1.1b). We have the know-how (see Sidebox 1.1); all we need is the will.

Figure 1.1a Buildings are the main cause of global warming because they use about 48 percent of all energy. Of that 48 percent, about 40 percent is for operating the buildings (heating, cooling, lighting, computers, etc.) and about 8 percent is for their construction (creating materials, transportation, and erection). (Courtesy of Architecture 2030.)

Figure 1.1b The good news is that buildings do not have to use climate-changing fossil fuels. Over the years, we have learned how to design buildings so energy efficient that we can now build zero-energy buildings. The small amount of energy that they still need can be supplied by renewable sources such as photovoltaics on the roof.

SIDEBOX 1.1

Characteristics of a Zero-Energy House

- Correct orientation
- Form as compact as appropriate for the climate and function
- Extensive use of white or very light colored surfaces
- Superinsulated walls, roof, and floor
- Airtight construction with a heat recovery unit for ventilation
- High-performance, properly oriented windows
- Windows fully shaded in summer
- Passive solar space heating
- Active solar domestic hot water
- High-efficiency appliances
- High-efficiency electric lighting
- High-efficiency heating and cooling equipment (e.g., earth-coupled heat pump)
- Photovoltaics on roof that produce the small amount of electricity still needed
There is a widespread belief that engineers design the heating, cooling, and lighting of buildings. The truth is that they only design the systems and equipment still needed after the architect designs the building to heat, cool, and light itself. Thus, the size of the mechanical and electrical equipment is an indicator of how successful the architect was. It is most important to realize that in designing a building to do most of the heating, cooling, and lighting, the architect is also designing the form and other aesthetics of a building.

This book was written to help the reader design sustainable buildings that use very little energy. It presents rules of thumb, guidelines, and examples that are drawn from the best of the old and the best of the new. Because traditional buildings used little energy, the methods they used to respond to their climate, locality, and culture can be a source of ideas and inspiration for modern architects.

1.2 INDIGENOUS AND VERNACULAR ARCHITECTURE

One of the main reasons for regional differences in architecture is the response to climate. This becomes apparent when looking at indigenous buildings, because they usually reflect the climate in which they were built.

In hot and dry climates, one usually finds massive walls and roofs used for their time-lag effect. Since the sun is very intense, small windows will adequately light the interiors. The windows are also small because during the daytime the hot outdoor air makes ventilation largely undesirable. The exterior surface colors are usually very light to minimize the absorption of solar radiation. Interior surfaces are also light to help diffuse the sunlight entering through the small windows (Fig. 1.2a).

Since there is usually little rain, roofs can be flat and are often used as additional living and sleeping areas during summer nights. Outdoor areas cool quickly after the sun sets because of the rapid radiation to the clear night sky. Thus, roofs are more comfortable than the interiors, which are still quite warm from the daytime heat stored in the massive construction.

Even community planning responds to climate. In hot and dry climates, buildings are often closely clustered for the shade they offer one another and the public spaces between them.

In hot and humid climates, we find a very different kind of building. Because water vapor blocks some solar radiation, air temperatures are lower than in hot and dry climates, but the high humidity still creates great discomfort. The main relief comes from shading and moving air across the skin to increase the rate of evaporative cooling. The typical antebellum house (see Fig. 1.2b) responds to the humid climate by its use of many large windows, large overhangs, shutters, light-colored walls, and high ceilings. The large windows maximize ventilation, while the overhangs and shutters protect from both solar radiation and rain. The light-colored walls minimize heat gain.

Since in humid climates nighttime temperatures are not much lower than daytime temperatures, massive construction is a disadvantage. Buildings are, therefore, usually made of lightweight wood construction. High ceilings permit larger windows and allow the air to stratify with people inhabiting the lower and cooler layers. Vertical ventilation through roof monitors or high windows not only increases ventilation but also exhausts the hottest air layers first. For this reason, high gabled roofs without ceilings (i.e., cathedral ceilings) are popular in many parts of the world that have hot and humid climates (Fig. 1.2c). Buildings are sited as far apart as possible for maximum access to the cooling breezes. In some humid regions of the Middle East, wind scoops are used to further increase the natural ventilation through the building (Fig. 1.2d).
Heating, Cooling, and Lighting as Form-Givers in Architecture

Figure 1.2b In hot and humid climates, natural ventilation from shaded windows is the key to thermal comfort. This Charleston, South Carolina, house uses covered porches and balconies to shade both windows and walls, as well as to create cool outdoor living spaces. The white color and roof monitor are also important in minimizing summer overheating.

Figure 1.2c In hot and humid climates such as in Sumatra, Indonesia, native buildings are often raised on stilts and have high roofs with open gables to maximize natural ventilation.

Figure 1.2d When additional ventilation is desired, wind scoops can be used, as on this reconstructed historical dwelling in Dubai. Also note the open weave of the walls to further increase natural ventilation. Although this is a desert area, lightweight construction is appropriate because the region along the Persian Gulf is humid. (Photograph by Richard Millman.)
In mild but very overcast climates, like the Pacific Northwest, buildings open up to capture all the daylight possible. In this kind of climate, the use of bay windows is quite common (Fig. 1.2e).

In a predominantly cold climate, we again see a very different kind of architecture. In such a climate, the emphasis is on heat retention. Buildings, like the local animals, tend to be very compact to minimize the surface-area-to-volume ratio. Windows are few because they are weak points in the thermal envelope. Since the thermal resistance of the walls is very important, wood rather than stone is usually used (Fig. 1.2f). Because hot air rises, ceilings are kept very low—often below 7 ft (2.2 m). Trees and landforms are used to protect against the cold winter winds. In spite of the desire for views and daylight, windows are often sacrificed for the overpowering need to conserve heat.

Despite the name, temperate climates are not mild. Instead, they are usually cold in the winter and hot in the summer. Consequently, temperate climates are difficult to design for.

1.3 FORMAL ARCHITECTURE

Throughout history, most master builders and architects have included environmental controls in their designs, just as their unschooled neighbors creating indigenous buildings did. After all, the Greek portico is simply a feature to protect against the rain and sun (Fig. 1.3a). The perennial popularity of classical architecture is based on not only aesthetic but also practical grounds. There is hardly a better way to shade windows, walls, and porches than with large
The Roman basilicas consisted of large high-ceilinged spaces that were very comfortable in hot climates during the summer. Clerestory windows were used to bring daylight into these central spaces. Both the trussed roof and groin-vaulted basilicas became prototypes for Christian churches (Fig. 1.3c).

Figure 1.3a The classical portico has its functional roots in the sun- and rain-protected entrance of the early Greek megaron. Maison Carrée, Nîmes, France.

Figure 1.3b The classical revival style was especially popular in the South because it was suitable for hot climates.

Figure 1.3c Roman basilicas and the Christian churches based on them used clerestory windows to light the large interior spaces. The Thermæ of Diocletian, Rome (A.D. 302), was converted by Michelangelo into the church of Santa Maria degli Angeli. (Photograph by Clark Lundell.)

One of the Gothic builders’ main goals was to maximize the window area for a large, fire-resistant hall. By means of the inspired structural system of groin vaulting, they were able to
send an abundance of daylight through stained glass windows (Fig. 1.3d).

The need for heating, cooling, and lighting had also affected the work of the twentieth-century masters such as Frank Lloyd Wright. The Marin County Civic Center emphasizes the importance of shading and daylighting. To give most offices access to daylight, the building consists of linear elements separated by a glass-covered atrium (Fig. 1.3e). The outside windows are shaded from the direct sun by an arcade-like overhang (Fig. 1.3f). Since the arches are not structural, Wright shows them hanging from the building.

Modern architecture prided itself on its foundation of logic. “Form follows function” was seen as much more sensible than “form follows some arbitrary historical style.” However, “function” was usually interpreted as referring to structure or building circulation. Rarely did it refer to low energy usage, which was seen as a minor issue at best and usually was not considered at all. Although that belief was never logical, it is clearly wrong today since energy consumption is the number-one issue facing the earth.

Like Frank Lloyd Wright, Le Corbusier also felt strongly that the building itself should be effective in heating, cooling, and lighting. He included thermal comfort and energy as functions in his interpretation of “form follows function.” His development of the brise-soleil (sunshades) will be discussed in some detail later. A feature found in a number of his buildings is the parasol roof, an umbrella-like structure covering the whole building. A good example of this concept is the Maison de l’Homme, which Le Corbusier designed in glass and painted steel (Fig. 1.3g).

Today, with no predominant style guiding architects, they occasionally use a mild form of revivalism. The buildings in Figure 1.3h use the classical portico for shading. Such historical adaptations can be more climate responsive than the “international style,” which typically ignores the local climate. Buildings in cold climates can continue to benefit from...
compactness, and buildings in hot and dry climates still benefit from massive walls and light exterior surfaces. Looking to the past in one’s locality helps lead to the development of new and sustainable regional styles.

1.4 THE ARCHITECTURAL APPROACH TO SUSTAINABLE DESIGN

The sustainable design of heating, cooling, and lighting buildings can be more easily accomplished by understanding the logic of the three-tier approach to sustainable design (Fig. 1.4a). The first tier consists of all of the decisions that are made in designing any building. When the designer consistently thinks of minimizing energy consumption as these decisions are made, the building itself can accomplish about 60 percent of the heating, cooling, and lighting.

The second tier involves the use of natural energies through such methods as passive heating, passive cooling, and daylighting systems. The proper decisions at this point can reduce the energy consumption another 20 percent or so. Thus, the strategies in tiers one and two, both purely architectural, can reduce the energy consumption of buildings up to 80 percent. Tier three consists of designing the mechanical and electrical equipment to be as efficient as possible. That effort can reduce energy consumption another 5 percent or so. Thus, only 15 percent as much energy is needed as in a conventional building. That small amount of energy can be derived from renewable sources both on- and off-site. Table 1.4A shows some of the design topics that are typical at each of the three tiers.
The three-tier approach to the sustainability design of heating, cooling, and lighting is shown. Tiers one and two are the domain of the architect, and proper design decisions at these two levels can reduce the energy consumption of buildings as much as 80 percent. All items with an asterisk are part of solar-responsive design. This image can be downloaded in color for free and used as a poster. It is available at www.heliodons.org.

The heating, cooling, and lighting design of buildings always involves all three tiers, whether consciously considered or not. Unfortunately, in the recent past minimal demands were placed on the building itself to affect the indoor environment. It was assumed that it was primarily the engineers at the third tier who were responsible for the environmental control of the building. Thus, architects sometimes designed buildings that were at odds with their environment. For example, buildings with large glazed areas were designed for very hot or very cold climates. The engineers were then forced to design giant, energy-guzzling heating and cooling plants to maintain thermal comfort. Ironically, these mostly glass buildings had their electric lights on
during the day, when daylight was abundant, because they were not designed to gather quality daylighting. As this shows, a building's energy consumption for heating, cooling, and lighting is mainly determined by the architect at the conceptual design stage.

In some climates, it is possible to reduce the mechanical equipment to zero. For example, Amory Lovins designed his home/office for the Rocky Mountain Institute in Snowmass, Colorado, where it is very cold in the winter and quite hot in the summer, to have no heating or cooling system at all. He used the strategies of tiers one and two to accomplish most of the heating and cooling, and he used photovoltaics, active solar, and very occasionally a wood-burning stove for any energy still needed.

Table 1.4B Building Form Implications

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>compactness to minimize surface area, thereby reducing heat gain/loss</td>
<td>cannot be oriented to give most windows the ideal orientation of north and south</td>
</tr>
<tr>
<td>minimum footprint on land</td>
<td>minimum potential for daylighting, passive solar, and passive cooling</td>
</tr>
<tr>
<td>good for cold climates</td>
<td></td>
</tr>
</tbody>
</table>

I.

- better for daylighting and natural ventilation than form I
- more people have access to views, although some only to the atrium

II.

- daylighting for whole space if one story and daylighting for most if two stories
- very high quality daylighting since it is mostly top lighting
- very high potential for passive solar heating through south-facing clerestories
- high potential for passive cooling through:
 - roof vents for natural and forced ventilation
 - solar chimneys
 - direct evaporative cooling from roof
 - no vertical circulation needed if one story and little vertical circulation if two stories
- if site permits, all or most windows can face the ideal orientation of north and south
- very high potential for daylighting
- high potential for cross ventilation
- very high potential for passive solar heating

III.

- very large footprint on land
- very large surface-area-to-volume ratio
- all windows cannot face the ideal orientation of north and south, but clerestories can
- larger surface to volume ratio than either form I or II
- if the site requires the long facades to face east and west, the building will perform poorly; cooling loads will be very high due to all or most windows facing east or west; quality daylighting will also be poor
- can fit on sites that may not work for form IV
- good potential for daylighting especially for the windows facing north and south
- very good potential for cross ventilation

IV.

- only some windows can face the ideal orientation of north and south
- many windows will be facing the problematic orientations of east and west
When it is consciously recognized that each of these tiers is an integral part of the heating, cooling, and lighting design process, buildings are improved in several ways: they can be less expensive because of reduced mechanical equipment and energy needs; they are usually also more comfortable because the mechanical equipment does not have to fight such giant thermal loads; and they are often more interesting because some of the money that is normally spent on the mechanical equipment is spent instead on the architectural elements. Unlike hidden mechanical equipment, features such as shading devices are a very visible part of the exterior aesthetic—thus, the name of this chapter is “Heating, Cooling, and Lighting as Form-Givers in Architecture.”

Table 1.4B outlines the advantages and disadvantages of the main massing schemes. Figure 1.4b illustrates how massing relates to climate in traditional building. The appearance of a building is also impacted by surface treatments such as shading devices, balconies, and green walls, which further impact the heating, cooling, and lighting of a building.

1.5 DYNAMIC VERSUS STATIC BUILDINGS

Is it logical that a static system can respond to a dynamic problem? A building experiences a very dynamic environment: cold in the winter, hot in the summer, sunny one day, cloudy the next, sunshine from the east in the morning and west in the afternoon, and the angle of sunrays changing minute by minute and day by day. Nevertheless, most buildings are static except for the mechanical and electrical equipment. Would it not make more sense for the building itself to change in response to the environment? The change can occur continuously over a day as, for example, a movable shading device that extends when it is sunny and retracts when it is cloudy. Alternatively, the change could be on an annual basis, whereby a shading device is extended for the summer and retracted for the winter, much like a deciduous tree. The dynamic aspect can be modest, as in movable shading devices, or it can be dramatic, as when the whole building rotates to track the sun (Figs. 9.15b to 9.15d). Since dynamic buildings are more energy efficient than static ones, it is likely that all future buildings will have dynamic facades. A major objection has been the difficulty of maintaining movable systems exposed to the weather. However, the present reliability of cars shows that movable systems can be made that need few if any repairs over long periods of time. With good design and materials, exposed building systems have become extremely reliable even with exposure to salt water and ice in the winter. Perhaps the modern airplane is an even better example of a reliable movable system than the automobile. Since no one shape of wing is ideal for all stages of flight, modern passenger jets change the shape of their wings as conditions change (Fig. 1.5). If planes can do this flying at hundreds of miles per hour in all weather conditions, certainly a building on the ground moving zero miles per hour can also have extremely reliable dynamic facades.

Not only will dynamic buildings perform much better than static buildings, but they will also provide an exciting aesthetic, the aesthetic of change. Numerous examples of dynamic buildings are included throughout the book, but most will be found in the chapters on shading, passive cooling, and daylighting.
1.6 RESILIENT DESIGN

We should design buildings not only to sustain the planet but also to sustain its occupants during an emergency. For example, houses on stilts had a better chance to survive the storm surges of Hurricanes Katrina and Sandy than the typical houses built close to the ground.

We rely on our buildings' mechanical systems and imported energy supplies to keep us warm in the winter, cool in the summer, and out of the dark all year. Yet, in January 1998, an ice storm in eastern Canada left four million people without power for weeks during the height of the winter. Heat waves in the United States and Europe are becoming more severe and frequent. Is it wise to rely on mechanical equipment and uninterrupted energy supplies? There is a growing conviction that buildings should be designed for passive survivability, today more commonly called

resilience. Others prefer the word “adaptive" because we must now design buildings that can adapt to a changing climate.

For a building to be resilient it must be able to operate at least for a while without energy or water inputs from the outside, and it must be able to survive storms and floods. Because we heat, cool, and light buildings with energy, this book focuses only on resilience related to energy. Fortunately, sustainable buildings are more resilient because they require much less energy to operate through efficiency, passive design, and possibly on-site energy production. When power or other energy supplies are not available, resilient (i.e., sustainable) buildings will get only moderately cold in the winter and moderately hot in the summer, and they will be illuminated with daylight most of the day. Thus, from an energy standpoint resilience is just another argument for sustainable design.

1.7 BIOPHILIC DESIGN

The biophilia hypothesis states that human beings have a need for connection with living things such as pets, wild animals, plants, and views of nature. Recent research in neuroscience and endocrinology support what social research and traditional knowledge have long indicated: experiencing nature has significant benefits. Consequently, bringing nature into, onto, and around buildings is not a luxury but is instead important for health, productivity, energy conservation, and, crucially, as this book will show, aesthetics (Colorplates 27, 30, and 34).

1.8 COLOR AND ORNAMENTATION

White is the greenest color outdoors as well as indoors. White roofs have half the heat gain of black roofs. White walls also reduce heat gain, and in urban canyons they deliver more daylight to lower floors and the streets. White cities will experience cooler heat islands than typical cities. Indoors, white ceilings and walls reflect precious daylight and electric lighting. White is unquestionably the most sustainable color.

Polished metal and glass are also used as exterior wall finishes, but both materials perform more poorly than flat white. All-glass facades are popular, but without shading devices or light shelves they have disadvantages besides the most serious of poor energy performance. Whatever sunlight is not transmitted indoors or absorbed by the glass is reflected like a mirror to adjacent buildings and the ground below. This reflected sunlight causes serious glare and overheating where it was not expected, such as on the north facade of neighboring buildings. Flat white walls,
energy and architecture

At its peak influence, modern architecture had no tolerance for ornamentation. Instead the emphasis was on form. Basing the aesthetic only on complex forms has strong energy implications, since more compact buildings are generally more sustainable. They require less material to build and less energy to operate for their lives. Thus, compact designs with ornamentation, small patches of color, or murals usually produce the most sustainable design (Fig. 1.8 and Colorplate 25). Fortunately, some types of ornamentation are again acceptable. The role of ornamentation in architecture is discussed by Brent C. Brolin in his book *Architectural Ornament: Banishment & Return*.

I.9 ENERGY AND ARCHITECTURE

The heating, cooling, and lighting of buildings are accomplished by either adding or removing energy. Consequently, this book is about the manipulation and use of energy. In the 1960s, the consumption of energy was considered a trivial concern. For example, buildings were sometimes designed without light switches because it was believed that it was more economical to leave the lights on continuously. Additionally, the most popular air-conditioning equipment for larger buildings was the terminal reheat system, in which the air was first cooled to the lowest level needed by any space and then reheated as necessary to satisfy the other spaces. The double use of energy was not considered an important issue.

The building in which the author taught architecture for thirty years was built in 1974. At that time, the “rational economic decision” was to put no insulation in the walls since it would not pay for itself quickly enough. Today we think that decision was idiotic. Will our “rational economic decisions” today seem just as shortsighted thirty years from now?

Buildings now use about 40 percent of all the energy consumed in the United States for their operation. To construct them takes another 8 percent of all the energy. Clearly, then, the building industry has a major responsibility in the energy picture of this planet. Architects have both the responsibility and the opportunity to design in an energy-conserving manner.

The responsibility is all the greater because of the effective life of the product. Automobiles last only about ten years, and so any mistakes will not burden society too long. Most buildings, however, should have a

Figure 1.8 Exterior murals have become quite popular, especially in cities where the demolition of some buildings expose property line walls that were never meant to be seen. A type of mural called trompe l’oeil creates architectural illusions, as in this Chicago building. Such murals create “architecture” with a minimum of materials and energy.
useful life of at least fifty years. The consequences of design decisions now will be with us for a long time.

When people realize that the fossil energy that buildings consume causes global warming, the immediate reaction is to support the production of renewable energy that causes no pollution and no global warming. The quickest, most effective, and least expensive ways to fight global warming, however, come from using less energy.

Unfortunately, the phrase “energy conservation” has negative connotations. It makes one think of shortages and discomfort. Yet architecture that conserves energy can be comfortable, sustainable, humane, and aesthetically pleasing. It can also be less expensive than conventional architecture. Operating costs are reduced because of lower energy bills, and first costs are often reduced because of the smaller amount of heating and cooling equipment that is required. To avoid negative connotations, the more positive and flexible phrases “energy-efficient design” or “energy-conscious design” have been adopted to describe a concern for energy conservation in architecture. Energy-conscious design yields buildings that minimize the need for expensive, polluting, and nonrenewable energy. Because of the benefit to planet Earth, such design is now called sustainable, green, or low carbon.

Because of global warming, it is now widely recognized that reducing the energy appetite of buildings is the number one green issue. As Figure 1.9 illustrates, the energy issues are a very large subset of all the sustainability issues. Figure 1.9 also demonstrates that the solar issues are a surprisingly large subset of the energy issues. One reason for this is that “solar” refers to many strategies: photovoltaics (solar cells), active solar (hot water), passive solar (space heating), daylighting, and shading. Although shading is the reverse of collecting solar energy, it is one of the most important solar design strategies, because it can save large amounts of air-conditioning energy at low cost.

1.10 CLIMATE AND ARCHITECTURE

In extreme climates, as are found in Russia and Indonesia, it is clear whether heating or cooling are the architect’s main concern, but in temperate climates, buildings must be designed for both heating and cooling (Fig. 1.10a). However, the energy used and the money spent on heating or cooling are rarely equal in temperate climates. Figure 1.10b shows the heating and cooling degree-days, which predict the energy required for heating and cooling, for four...
American cities. For an explanation of degree-days, see Section 5.6(k)

Some aspects of building design are equally valid for both the heating and cooling loads. Insulation levels and an east-west building orientation reduce energy requirements in both summer and winter. However, other aspects of building design favor one season over another. For example, high ceilings are appropriate for a cooling-dominated climate while low ceilings are better for a heating-dominated climate.

Because a building designed for its climate will be more energy efficient, it is important for the architect to know if heating or cooling loads dominate. For this reason, Chapter 5 gives detailed climate information for seventeen climate regions in the United States and Canada.

The problem of designing for a climate is further complicated because the heating and cooling loads vary with building type in the same climate. For example, an office building will have smaller heating and larger cooling loads than a house in the same climate. For simplicity, this book places building types into one of two categories: “internally dominated” buildings such as large office buildings and “envelope-dominated” buildings such as houses.

Because most people in the world live in hot climates, and because they are becoming wealthier, the use of air-conditioning is growing exponentially (Fig. 1.10c). Even in the United States,

Figure 1.10b It may not be surprising that buildings in New York and Chicago need to emphasize the heating season, but it may be surprising that heating is also important in Dallas and Los Angeles. Note that the heating and cooling degree-days in those cities are almost equal.

Figure 1.10c Because most people live in hot climates and because the number of people who can afford air conditioners is increasing rapidly, the energy needed for cooling is increasing exponentially. Thus, heat avoidance strategies such as shading will dominate future world architecture.
the energy for cooling is increasing as more people can afford it and as more people move to the South. To reduce the growth of energy consumption for air-conditioning, architects must focus on heat avoidance strategies such as shading and light colors.

1.11 SUSTAINABILITY CODES AND VOLUNTARY PROGRAMS

All over the world, codes and programs have been put in place to impel buildings to be low energy and low carbon. In the United States, the main codes are ASHRAE 90.1 and 189.1, the International Energy Conservation Code (IECC), and the International Green Construction Code (IGCC). However, it is mostly up to states and municipalities to pass laws that make codes mandatory.

To supplement the impact of codes, a number of programs have been created to spur the movement to low energy buildings. The most famous by far is Leadership in Environmental and Energy Design (LEED), created and run by the United States Green Building Council (USGBC). With each new version, the LEED program increases its focus on creating low energy buildings. The Green Building Initiative’s Green Globes program is an alternative to LEED in the United States. Passive House is a rigorous program most appropriate to cold climates, and maybe the most demanding program of all is the Living Building Challenge.

The Environmental Protection Agency (EPA) of the United States government administers the voluntary Energy Star program, which produces ratings for products and appliances. The program also promotes efficient building methods.

Another method for encouraging sustainable design is to give awards. Every year the American Institute of Architecture Committee on the Environment (AIA/COTE) announces the “Top Ten” from all the submissions of sustainable design it receives. Energy responsiveness is an important criterion.

Perhaps the most important organization for making buildings adapt to climate change is Architecture 2030. In 2006 it issued the 2030 Challenge, which would reduce greenhouse gas emissions of buildings to zero by 2030 in steps—70 percent reduction by 2015, 80 percent reduction by 2020, 90 percent reduction by 2025, and 100 percent reduction by 2030. The 2030 Challenge has been adopted by the AIA; the U.S. Council of Mayors; the National Association of Governors; the U.S. Green Building Council; the U.S. government, which requires all new and renovated federal buildings to meet the challenge (2007 Energy Independence and Security Act); and numerous other governmental, for-profit, and nonprofit organizations.

The reader is encouraged to visit Architecture 2030s website: www.architecture2030.org.

Figure 1.11 The energy performance of buildings constructed under the influence of energy codes and voluntary programs varies greatly, as this diagram indicates. The ranking is based on the Home Energy Rating System (HERS) index. (After the Rocky Mountain Institute.)
The combination of codes and voluntary programs is having a profound effect on how America builds. See Figure 1.11 on how the various codes and programs compare in achieving great energy performance.

1.12 INTEGRATED DESIGN

Buildings have become too complex for any one individual to design, and the need for sustainability has further increased the complexity of buildings. The traditional linear design process, where the various building professions make their contributions sequentially, is not suited to creating high-performing buildings (Fig. 1.12a). In such a design process, the various building systems are not able to work together most efficiently. Instead, they are often competing with one another. For example, an all-glass facade will result in a huge energy guzzling mechanical system. In the sequential design process, it is usually too late to redesign the glass facade when the mechanical equipment is being designed and found to be excessively large. In the integrated whole-building design process, on the other hand, the needs of the various systems are considered at the very beginning of the architectural design so that they can all work together most efficiently.

Figure 1.12a In the traditional linear design process, the various building design professionals work on a project sequentially. Unfortunately, this method does not promote the design of high-performing sustainable buildings.

Figure 1.12b In the whole-building integrated design process, the needs of the various building systems are considered from the very beginning of the design process. The resultant designs are then harmonious with the needs of the various systems to create high-performance buildings. It also makes possible synergies that further improve the performance and sustainability of a project.
1.13 Decision Making

The design process is essentially a decision-making process based on asking the right questions in the right order. For example, the first line in the first drawing should be made only after the many consequences of the building's location, orientation, and length have been considered. The wrong orientation of a building, for instance, will have great negative consequences later on when design decisions are made about shading, passive solar, and daylighting.

The set of decisions necessary to create a sustainable building can be divided into three subsets: decisions for which a clear-cut best answer exists; decisions which are not clear-cut but modeling can give the best answer; and decisions which are essentially subjective (Fig. 1.13). The architect and other building professionals should be aware of the issues that are clear-cut, and they should start the design process using these proven ideas. To use an extreme example, in designing a car the decision that the wheels should be round must come at the beginning. It is not necessary to model square wheels to find out if they are the best choice. Indeed, it is not appropriate to use square wheels even if they are visually more consistent with a square body. The shape of the wheels is not open to a subjective decision. Similarly, to create high-performance sustainable buildings most subjective decisions should made only after the important objective decisions have been considered.
The set of all design decisions that are made in designing a building to be sustainable

1. The set of design decisions for which there is a clear-cut best answer

2. The set of design decisions for which no obvious clear-cut answers exist but can be answered with the help of computer modeling

3. The set of design decisions which have no objective answers

Figure 1.13 To create a high-performing, sustainable building, the decisions made at the beginning of the schematic design stage are critical. The decisions based on hard, well-known principles should be made first, and the decisions based on subjective principles should be made last.

1.14 CONCLUSION

The following design considerations have an impact on both the appearance and the heating, cooling, and lighting of a building: form, orientation, compactness (surface-area-to-volume ratio), size and location of windows, and the nature of the building materials. Thus, when architects draw the first line at the schematic design stage to design a building, they simultaneously start the design of the heating, cooling, and lighting. Because of this inseparable relationship between architectural features and the heating, cooling, and lighting of buildings, we can say that the environmental controls are form-givers in architecture.

It is not just tiers one and two that have aesthetic impact. The mechanical equipment required for heating and cooling is often quite bulky, and because it requires access to outside air, it is frequently visible on the exterior. The lighting equipment, although less bulky, is even more visible. Thus, even tier three is interconnected with the architectural aesthetics, and, as such, must be considered at the earliest stages of the design process.

KEY IDEAS OF CHAPTER 1

1. Both vernacular and formal architecture were traditionally designed to respond to the heating, cooling, and lighting needs of buildings.
2. Borrowing appropriate regional design solutions from the past (e.g., the classical portico for shade) can help in creating sustainable buildings.
3. In the twentieth century, engineers dealing with mechanical and electrical equipment had the primary responsibility for the environmental needs of buildings. Architects had provided for these needs in the past, and they can again be important players in the future.
4. The heating, cooling, and lighting needs of buildings can be designed by the three-tier approach:

TIER ONE: the basic design of the building form and fabric (by the architect)

TIER TWO: the design of passive systems (mostly by the architect)

TIER THREE: the design of the mechanical and electrical equipment (by the engineer).

5. Buildings use about 40 percent of all the energy consumed in the United States. Their construction takes another 8 percent.

6. Currently, the dynamic mechanical equipment responds to the continually changing heating, cooling, and lighting needs of a building. There are both functional and aesthetic benefits when the building itself is more responsive to the environment (e.g., movable shading devices). Buildings should be dynamic rather than static.

7. Sustainable buildings also provide resilience ("passive survivability") in case of power outages or high fuel costs.

8. Sustainable buildings should also be adaptive by anticipating a more severe climate due to global warming.

9. Sustainable buildings should consider biophilia for both functional and psychological reasons.

10. White is the greenest color. Roofs and walls should be white in order to create cooler buildings and cooler cities.

11. Because a compact "shoebox" building is often the most sustainable form, color and ornamentation should be used to create interest.

12. Energy codes are necessary to make most buildings more energy efficient. Voluntary programs like LEED are helping to change the worldview of the building industry.

13. The integrated whole-building approach to design creates much higher performing, more sustainable buildings.

14. The design process is a decision-making process. The early decisions in the process are the most important because they affect the available options later on.

15. Because of global warming, it is imperative that buildings use less energy and achieve zero greenhouse gas emissions by 2030.

16. There is great aesthetic potential in energy-conscious architecture.

Resources

FURTHER READING

See the Bibliography in the back of the book for full citations.

Cox, S. *Losing Our Cool.*

Duly, C. *The Houses of Mankind.*

Fitch, J. M. *The Architecture of the American People.*

———. *Shelter: Models of Native Ingenuity.*

Heschong, L. *Thermal Delight in Architecture.*

Konya, A. *Design Primer for Hot Climates.*

Lovins, Amory. "More Profit with Less Carbon."

McDonough, W., and M. Braungart. *The Next Industrial Revolution.*

Olgyay, V. *Design with Climate: Bioclimatic Approach to Architectural Regionalism.*

Rapport, A. *House Form and Culture.*

Rudofsky, B. *Architecture without Architects: A Short Introduction to Non-Pedigreed Architecture.*

———. *The Prodigious Builders: Notes Toward a Natural History of Architecture.*

PAPERS

———. "Rhythm and Ritual." www.rcf.usc.edu/~rknowles.

ORGANIZATIONS

GreenSource, www.greensource.construction.com

Environmental Building News (EBN), www.buildinggreen.com/news

Rocky Mountain Institute, www.rmi.org